第226章 拉格朗日乘数法(1 / 2)

文曲在古 戴建文 1933 字 2个月前

第 226 章 拉格朗日乘数法

新的一天,阳光透过学堂的窗户,柔和而温暖地洒在学子们的课桌上,形成一片片斑驳的光影。戴浩文先生精神抖擞地站在讲台前,目光中充满了期待,准备带领大家开启新的数学知识篇章——拉格朗日乘数法。

“同学们,在我们不断探索数学的广袤世界时,今天我们即将涉足一个充满魅力且实用的领域——拉格朗日乘数法。”戴浩文先生的声音沉稳而有力,清晰地传遍了整个学堂。

他转身,拿起粉笔,在黑板上写下一个简单的优化问题:“求函数 f(x, y) = x^2 + y^2 在约束条件 g(x, y) = x + y - 1 = 0 下的最小值。”

学子们的目光紧紧盯着黑板上的题目,眼神中透露出好奇和思索。他们的大脑开始飞速运转,试图在已有的知识体系中找到与之相关的线索。

戴浩文先生放下粉笔,双手撑在讲台上,开始详细讲解:“首先,我们引入拉格朗日乘数λ,构建拉格朗日函数 L(x, y, λ) = x^2 + y^2 + λ(x + y - 1) 。同学们,可能你们会好奇,为什么要这样构建呢?”

一位坐在前排的同学迫不及待地举起手提问:“先生,为什么要这样构建呢?”

戴浩文先生微笑着回答:“这是个很好的问题。我们这样构建的目的,是将有约束条件的优化问题转化为无约束条件的问题。通过引入这个拉格朗日乘数λ,我们能够把约束条件融合到新构建的函数中,从而使问题的解决有了新的途径。”

接着,他回过身,用粉笔指着黑板继续说道:“接下来,我们分别对 x、y 和λ求偏导数,并令其等于零。”

戴浩文先生在黑板上写下详细的偏导数式子:

?L/?x = 2x + λ = 0 ①

?L/?y = 2y + λ = 0 ②

?L/?λ = x + y - 1 = 0 ③

“我们来看这三个式子,先从①和②入手,同学们,你们能发现什么?”戴浩文先生用鼓励的眼神看着大家。

一位聪明的学子站起来回答:“先生,从这两个式子可以得出 2x = 2y,也就是说 x = y。”

戴浩文先生满意地点点头:“非常好!那既然 x = y,我们将其代入③中,就得到 2x - 1 = 0,那么很容易就能解得 x = y = 1/2 。”

“所以,在这个约束条件下,函数 f(x, y) 的最小值就是 1/2 。大家明白了吗?”戴浩文先生目光扫过每一位学子。

同学们纷纷点头,但眼神中仍有一些疑惑。

戴浩文先生似乎看出了大家的心思,他说道:“不要着急,我们再来看一个更复杂的例子。”

他再次拿起粉笔,在黑板上写下:“求函数 f(x, y) = xy 在约束条件 x^2 + y^2 = 1 下的最大值和最小值。”

这一次,同学们的眉头皱得更紧了,显然这个问题的难度增加了不少。

戴浩文先生耐心地引导大家:“同样地,我们构建拉格朗日函数 L(x, y, λ) = xy + λ(x^2 + y^2 - 1) ,然后求偏导数。”

他在黑板上逐步写出求偏导的过程:

?L/?x = y + 2λx = 0 ④

?L/?y = x + 2λy = 0 ⑤

?L/?λ = x^2 + y^2 - 1 = 0 ⑥

“同学们,我们来仔细分析这三个式子。由④和⑤,我们可以尝试消除λ,看看能得到什么新的关系。”

经过一番思考和讨论,学子们在戴浩文先生的引导下,逐渐找到了思路。

“那我们得到了这些关系,再结合⑥式,就能够求解出 x 和 y 的值。”戴浩文先生一边说,一边在黑板上进行计算。

经过一番复杂的运算,最终得出了这个问题的解。

此时,有些同学已经开始感到有些吃力,但戴浩文先生鼓励道:“数学的学习就像攀登山峰,过程可能会有些艰难,但当我们到达山顶,看到那美丽的风景时,一切努力都是值得的。”

为了让大家更好地理解和掌握拉格朗日乘数法,戴浩文先生又列举了几个不同类型的例子。

“假设我们有一个生产问题。一个工厂生产两种产品 A 和 B,生产一单位 A 产品的成本是 2 元,生产一单位 B 产品的成本是 3 元。市场对这两种产品的需求有一定的限制,比如 A 产品和 B 产品的总数量不能超过 100 个。现在要确定生产多少 A 产品和 B 产品,才能使总成本最小。我们就可以用拉格朗日乘数法来解决这个问题。”

戴浩文先生详细地分析着问题,将实际问题转化为数学模型。

这章没有结束,请点击下一页继续阅读!

“再比如,在物理学中,考虑一个质点在一个力场中运动。质点的势能函数是 f(x, y, z),同时受到一个约束条件,比如质点必须在某个曲面 g(x, y, z) = 0 上运动。我们可以用拉格朗日乘数法来找到质点在这个约束下的稳定位置。”

同学们听得津津有味,不时地在本子上记录着关键的步骤和思路。

戴浩文先生接着说:“拉格朗日乘数法不仅在二维和三维的问题中有应用,在更高维度的空间中同样适用。虽然计算会更加复杂,但原理是相同的。”