炽天子继续画图,在图一上画图,画出哎等于一,哎等于二,哇等于一,三条直线将图一分隔成三份,图上可以看从左到右和从下到上,三份区域分别为图零,正方体,和剩下的「哔」面积的图。
“接下来,建立个局部坐标系,就以图一的(一,一)点为原点,那么「哔」面积的图的解析式就是——哇等于{(哎的平方)减去(二倍哎)}。”炽天子说着,不过炽天子没法说清楚标点符号表达的计算优先级,于是一边说,一边写在草稿纸上。
“这个新函数在哎轴零到一上围成的面积就是「哔」,记录该图为图四。”炽天子继续强调着,生怕漏掉了什么关键逻辑。
“嗯,这个函数的解析式用解析式的原点变换就能算了,也可以用三点法代入重新算这二次函数。”快乐爱丽一边补充着,期待炽天子接下来的计算。
(四)
接着,用哇等于{(哎的平方)减去(二倍哎)}这个函数,减去哇等于哎的平方的函数,主要就是右边的解析式相减,在哎轴零到一上,表达出的图像操作,就是图四减图零,得到又一个新函数,哇等于二倍哎,正好把前面两个函数中的哎的平方这项给减去了。
而哇等于二倍哎,在哎轴零到一上,围成的面积,就用三角形面积计算,一乘二除以二等于一。
综上,表达成图形面积就是:「哔」减去「啊」等于一。
继续,从图一的构成来看,图一面积为八倍「啊」,图一中图四面积为「哔」,可以得出「哔」的表达式:「哔」等于八倍「啊」减去「啊」再减一。减去的单独的「啊」就是图零,后面减的一就是前面说的正方形。
整合下得出二元一次的方程组:
「哔」等于七倍「啊」减一。
「哔」减「啊」等于一。
故,解得「啊」等于三分之一,「哔」等于三分之四。
“所以,综上所述,这个图零的面积就等于三分之一,也就是说,哇等于哎的平方在哎轴零到一上投影围成的面积就是三分之一。”炽天子说着最后解出的结论,快乐爱丽再次梳理着。
“喔喔,好巧啊,就通过图形和函数变换的方法,就算出了二次函数的和哎轴围成的面积。”米字爱丽说着,她感叹着这个巧妙的发现。
“不过还是用微积分的方法来算快些,如果一些函数的图像复杂起来,不一定保证能用同样的方法来这样减去面积。”炽天子说着。
(五)
快乐爱丽给炽天子整理着这个小小的发现,虽然计算过程只取了零到一来算,其实是还能形成扩展变换的,就是把哎轴上的一替换成一个任意未知数,然后再以未知数代入计算上面的过程,如果最后得出的结果是和这个未知数相关的三分之一倍数,那就说明这个方法证明了这个图形法的二次函数的计算通用性。
“那要不试试三次函数,四次函数?”快乐爱丽问着。
“不了,现在都到凌晨了。”炽天子说着,然后洗洗睡了。