第202章 二项式定理之实例探究(1 / 2)

文曲在古 戴建文 991 字 2个月前

第 202 章 二项式定理之实例深究

数日已过,戴浩文于讲堂之上,再论二项式定理之妙处。其身着素袍,手持戒尺,目光炯炯,环视诸生。

言曰:“前番已授汝等二项式定理之要义,今当以实例详析,以增汝等之领悟。”

遂于黑板书一题:“今有一商人,欲购货物,其价依二项式(a + b)^n 而定,其中 a 为原价,b 为涨幅,n 为购货之次数。若原价为十金,涨幅为三金,购货三次,试求其总价几何?”

诸生见此题,皆低头沉思,奋笔疾算。

少顷,一生起身答曰:“先生,依二项式定理展开,可得总价为 a^3 + 3a^2b + 3ab^2 + b^3 ,代入数值,即为 10^3 + 3×10^2×3 + 3×10×3^2 + 3^3 = 1000 + 900 + 270 + 27 = 2197 金。”

戴浩文微微颔首,曰:“善。然此仅为其一例,再观此题。”

又书一题:“某工匠制器,其成功率为(a + b)^n ,其中 a 为成功之概率,b 为失败之概率,n 为制器之数。若成功概率为半,制器五次,求至少成功三次之概率。”

诸生闻此,交头接耳,讨论纷纷。

一聪慧之生言道:“先生,此当用二项式定理分别算出成功三次、四次、五次之概率,再相加可得。”

戴浩文笑曰:“然也。汝等速速计算。”

诸生遂埋头苦算,良久,得数而出。

戴浩文曰:“善哉。今再看此例。”

复书一题:“一军出征,其胜败之数依二项式而定。若胜之概率为七成,出战八次,求胜五次之概率及期望之胜数。”

诸生观此题,难度更甚,然未有退缩之意,皆全力思索。

一学子率先算出:“先生,胜五次之概率为 C(8, 5)×0.7^5×0.3^3 ,期望之胜数为 8×0.7 = 5.6 。”

戴浩文抚须赞曰:“妙极!由此可见,二项式定理于此类问题之解决,功莫大焉。”

又道:“且看此题。古之农田,稻麦之收成因年而异,其丰收之率若以二项式表之。设初年均收为百石,丰年增率为二成,灾年减率为一成,历经十载,试算总收之数。”

众学子绞尽脑汁,推演算式。

有一生答曰:“先生,依理展开计算,可得总收约为千五百石。”

戴浩文曰:“差强人意。当更细心思之。”

继而再出一题:“昔有巧匠造楼,其进度依二项式行之。若初始每日建十丈,速增之率为半成,工期三十日,问终成之高几何?”

诸生苦思冥想,终得答案。

戴浩文曰:“汝等可知,二项式定理于天文历法、水利工程,亦多有用处。如测星辰之轨迹,算河水流速,皆可依此理推之。”

遂又举例详解,诸生如痴如醉,沉浸其中。